

Cyprus University of Technology

LABORATÓRIO NACIONAL DE ENGENHARIA CIVIL adelphi

Supplementary document

Annex to Deliverable #D2.1

Matrix of feasibility criteria for managed aquifer recharge

Abstract

This document is an annex to AGREEMAR project deliverable D2.1 Matrix of feasibility criteria for managed aquifer recharge (free to download at the address: https://www.agreemar.inowas.com/deliverables). The report contains a hierarchical database with criteria proposed for the assessment of geospatial site feasibility for managed aquifer recharge (MAR). For details regarding the methodology used for data collection, management and validation see original deliverable D2.1.

This list of feasibility criteria is not exhaustive and it will be continuously updated during the entire project duration. The list is open for external contributions and we highly encourage the wider MAR community to provide feedback and recommendations for improving the list. For this, please use the online questionnaire (https://agreemar.inowas.com/feasibility-criteria/) or contact us at: https://agreemar.inowas.com/contact/.

To learn more about the AGREEMAR project (Adaptive agreements on benefits sharing for managed aquifer recharge in the Mediterranean region) feel free to visit our website: https://www.agreemar.inowas.com.

 File version:
 v2

 Last update:
 02.11.2022

Overview

A Intrinsic site	e suitability	8
A.1 A	quifer	8
A.1.1	Aquifer characteristics	8
A.1.1.1	Aquifer storage capacity	8
A.1.1.2	Specific yield (storativity)	8
A.1.1.3	Aquifer storage capacity	8
A.1.1.4	Specific yield (storativity) of the aquifer	8
A.1.1.5	Aquifer geochemistry	8
A.1.1.6	Aquifer microbiology	8
A.1.2	Groundwater flow characteristics	8
A.1.2.1	Groundwater gradient (dh/dx) inside the aquifer	8
A.1.2.2	Groundwater flow velocity	8
A.1.2.3	Hydraulic conductivity of the aquifer	8
A.1.2.4	Direction of groundwater motion	8
A.1.2.5	Residence time inside the aquifer	8
A.1.3	Aquifer structure and physical boundaries	9
A.1.3.1	Aquifer geometry	9
A.1.3.2	Aquifer lithology	9
A.1.3.3	Lateral connections with the aquifer	9
A.2 Va	adose zone	9
A.2.1	Groundwater table	9
A.2.1.1	Thickness of vadose zone	9
A.2.1.2	Fluctuations of groundwater table (intra-seasonal and inter-seasonal)	9
A.2.1.3	Infiltration capacity of the vadose zone	9
A.2.2	Geochemistry	9
A.2.2.1	Geochemistry of vadose zone	9
A.3 Su	urface	9
A.3.1	Geomorphology	9
A.3.1.1	Land slope	9
A.3.2	Hydrography	9
A.3.2.1	Drainage density (abundance of rivers and streams)	9
A.3.3	Land use / land cover	10
A.3.3.1	Soil occupation	10
A.3.3.2	Land surface area	10
A.3.4	Soil	10
A.3.4.1	Top-soil texture	10

3 AGREEMAR

A.3.4.2	Total organic carbon of top soil	10
A.3.4.3	Lineament density	10
A.3.5	Karst features	10
A.3.5.1	Epikarst development	10
A.3.5.2	Degree of karstification	10
B Availability	of water for MAR	11
B.1 Cl	imatic context	11
B.1.1	Hydrometeorology	11
B.1.1.1	Precipitation	11
B.1.1.2	Evapotranspiration	11
B.1.1.3	Direct run-off	11
B.2 Sc	burce water	12
B.2.1	Source water quality	12
B.2.1.1	Pathogen concentration of recharge water	12
B.2.1.2	Nutrients concentration of recharge water	12
B.2.1.3	Salinity and sodicity concentrations of recharge water	12
B.2.1.4	Organic chemicals in recharge water (pesticides, pharmaceuticals, etc.)	12
B.2.1.5	Turbidity and particulates of recharge water	12
B.2.1.6	Inorganic chemical concentrations of recharge water	12
B.2.1.7	Radionuclides in recharge water	12
B.2.1.8	Proximity to contamination sources (including the sea)	12
B.2.1.9	Pathogen concentration of recharge water	12
B.2.2	Source water availability	13
B.2.2.1	Natural water availability	13
B.2.2.2	Non-conventional water availability	13
B.2.2.3	Proximity to origin of water sources (incl. conventional and non-conventional)	13
B.2.2.4	Water supply connection density	13
B.2.2.5	Surface water conveyance infrastructure	13
C Water dema	and	14
C.1 Pr	ovisioning needs	14
C.1.1	Domestic supply	14
C.1.1.1	Non-satisfied domestic demand by the existing water resource	14
C.1.1.2	Annual growth rate of domestic water supply	14
C.1.1.3	Water price	14
C.1.2	Agricultural supply	14
C.1.2.1	Crop pattern	14
C.1.2.2	Land covered/used	14
C.1.2.3	Annual growth/decline rate of agricultural supply	14
C.1.2.4	Irrigation efficiency	14
C.1.3	Industrial supply	15

4 AGREEMAR

들 AGREEMAR

C.1.3.1	Consumption per unit area	15
C.1.3.2	Industrial area extent	15
C.1.3.3	Annual growth/decline rate of industrial supply	15
C.1.4	Geothermal energy	15
C.1.4.1	Generated energy from geothermal water	15
C.2 Re	egulatory needs	15
C.2.1	Buffering water quality	15
C.2.1.1	Rate of aquifer salinization	15
C.2.1.2	Decrease of groundwater levels (e.g., annual mean values, seasonal)	15
C.2.2	Buffering water quantity	15
C.2.2.1	Flood risk (flood water might be harvested and injected to the aquifer)	15
C.2.2.2	Erosion risk (run-off water might be collected and injected to the aquifer)	15
C.2.2.3	Natural groundwater recharge rate	15
C.3 Su	upporting needs	16
C.3.1	Groundwater dependent ecosystems	16
C.3.1.1	Required stream baseflow	16
C.3.1.2	Required springs discharge	16
C.3.1.3	Required water to maintain wetlands and phreatophytes	16
C.3.1.4	Required water to maintain hyporheic zone dynamics	16
C.3.2	Land surface stability	16
C.3.2.1	Risk of land subsidence (MAR can reduce the risk of land subsidence)	16
C.4 Cu	ultural needs	16
C.4.1	Hot springs	16
C.4.1.1	Hot water abundance in hot springs	16
C.4.1.2	Number of visitors of hot springs	16
C.4.2	Leisure and recreation	16
C.4.2.1	Decrease of water volumes in water bodies	16
C.4.2.2	Number of site visitors for leisure and recreation	16
D Non-physic	al considerations	17
D.1 Le	egal constraints	17
D.1.1	Legal constraints	17
D.1.1.1	Legal constraints at European, National, International scale	17
D.2 G	overnance constraints	17
D.2.1	Water rights	17
D.2.1.1	Water rights for beneficiaries	17
D.2.1.2	Source water owner	17
D.2.1.3	Land ownership	17
D.2.1.4	Acceptance of MAR owner by local stakeholders	17
D.2.1.5	Level of accountability in terms of legislations and public	17
D.2.2	Trans-border issues	17

5 AGREEMAR

D.2.2.1	Existence of transboundary flows	17
D.2.2.2	Issues with downstream/upstream countries	17
D.2.3	Political stability	18
D.2.3.1	Regional conflicts (in general)	18
D.2.3.2	Corruption	18
D.3 So	ocial constraints	18
D.3.1	Awareness of MAR	18
D.3.1.1	Awareness for MAR	18
D.3.1.2	MAR acceptance (e.g., religion constraints)	18
D.3.1.3	Priority of water allocation	18
D.3.2	Vulnerability to groundwater supply	18
D.3.2.1	Poverty status	18
D.3.2.2	Linguistic isolation	18
D.3.2.3	Educational attainment	18
D.3.3	Health	18
D.3.3.1	Possible impact of MAR facility on health	18
D.3.4	Social capital	19
D.3.4.1	Social participation / involvement in MAR implementation	19
D.3.4.2	Social support for MAR enhancement	19
D.4 Ei	nvironmental constraints	19
D.4.1	On optical aesthetics during the construction stage	19
D.4.1.1	Distance of MAR to other types of infrastructure, especially sensitive landscape	19
D.4.2	On emissions	19
D.4.2.1	Emission during construction	19
D.4.2.2	Risk of Insect proliferation	19
D.4.3	Cultural heritage	19
D.4.3.1	Risk of MAR on archeological sites/objects	19
D.5 E0	conomic constraints	20
D.5.1	Investment costs	20
D.5.1.1	Cost of preliminary studies	20
D.5.1.2	Cost of water abstraction	20
D.5.1.3	Cost of water transfer	20
D.5.1.4	Cost of recharge water	20
D.5.1.5	Cost of land acquisition	20
D.5.1.6	Cost of Infiltration basins	20
D.5.2	Operating costs	21
D.5.2.1	Cost of water purchase during operating phase of MAR	21
D.5.2.2	Cost of maintenance and uptake during operating phase of MAR	21
D.5.2.3	Cost of energy during operating phase of MAR	21
D.5.2.4	Cost of pre-treatment operation during operating phase of MAR	21

6 AGREEMAR

들 AGREEMAR

D.5.2.5	Cost of monitoring during operating phase of MAR	21
D.5.2.6	Other annual expenses during operating phase of MAR	21
D.5.3	Levelized costs	21
D.5.3.1	Levelized cost: maintenance cost-recharge	21
D.6 In	frastructural constraints	21
D.6.1	Accessibility	21
D.6.1.1	Accessibility network to MAR facility	21
D.6.2	Communications	22
D.6.2.1	Communication systems with and within MAR facility	22
D.7 Sa	afety	22
D.7.1	Safety of the workers and users	22
D.7.1.1	Water level of the recharge ponds in relation to workers and users' safety	22
D.7.1.2	Electricity contact with operating system in relation to workers and users' safety	22

A Intrinsic site suitability

The thematic area of **intrinsic site suitability** contains information regarding the hydrogeological characteristics of the regions considered for MAR implementation. This group is organized into three topics: surface area, vadose zone and aquifer. Each of these topics contains a set of categories, which are used during the process of criteria selection to rank and identify sites intrinsically suitable for MAR.

A.1 Aquifer

A.1.1	Aquifer characteristics		
A.1.1.1	Aquifer storage capacity	Amount of water that can be (effectively) stored within the aquifer.	[Mm ³]
A.1.1.2	Specific yield (storativity)	Storativity (S) is the volume of water removed from a unit area of an aquifer for a unit drop in hydraulic head.	[m³/m³]
A.1.1.3	Aquifer storage capacity	Amount of water that can be (effectively) stored within the aquifer.	[Mm ³]
A.1.1.4	Specific yield (storativity) of the aquifer	Storativity (S) is the volume of water removed from a unit area of an aquifer for a unit drop in hydraulic head.	[m³/m³]
A.1.1.5	Aquifer geochemistry	Geochemical composition of the aquifer.	[mg/l]
A.1.1.6	Aquifer microbiology	Microbiological composition of the aquifer.	[CFU/ml]

↑ Go to overview ↑

A.1.2 Groundwater flow characteristics

A.1.2.1	Groundwater gradient (dh/dx) inside the aquifer	Low slope allows sufficient time for infiltration and water quality improvement.	[m/m]
A.1.2.2	Groundwater flow velocity	Not very high so that a sufficient amount remains in the aquifer for beneficial purposes, not very slow so that water can be uniformly distributed within the aquifer, without the need to recharge at many locations.	[m/day]
A.1.2.3	Hydraulic conductivity of the aquifer	Hydraulic conductivity is a measure of how easily water can pass through soil or rock: high values indicate permeable material through which water can pass easily; low values indicate that the material is less permeable.	[m/s]
A.1.2.4	Direction of groundwater motion	Darcy's law can be used to determine the flux vector.	[-]
A.1.2.5	Residence time inside the aquifer	Related with the scale of the groundwater system and the MAR objectives (e.g., large residence times for treated water so that natural decay and bio- chemical processes become effective) ¹ .	[day]

↑ Go to overview ↑

8 AGREEMAR

¹ Toth, A., Huysmans, M., Hartog, N., Stefan, C., Mádl-Szőnyi, J. (2022) The use of regional groundwater flow characteristics for optimized screening of MAR potential and application conditions. 11th International Symposium on Managed Aquifer Recharge, Long Beach, April 11-15, CA, USA.

Adaptive agreements on benefits sharing for managed aquifer recharge in the Mediterranean region

	•	-	
A.1.3.1	Aquifer geometry	Reduces the penetration of ground surface contaminants.	[m]
A.1.3.2	Aquifer lithology	Vertical geological barriers, permeable to sea/lake/river such as boundary conditions in models.	[type]
A.1.3.3	Lateral connections with the aquifer	Hydraulic connections between the aquifer and other water bodies.	[no./area]
			↑ Go to overview ↑

A.1.3 Aquifer structure and physical boundaries

A.2 Vadose zone

A.2.1	Groundwater table		
A.2.1.1	Thickness of vadose zone	Infiltration rates depend on the thickness of the unsaturated zone. It also influences the residence time of the flow, and affects the water quality improvement through biodegradation and sorption mechanisms.	[m]
A.2.1.2	Fluctuations of groundwater table (intra- seasonal and inter- seasonal)	Seasonality of groundwater levels can impact the composition of vadose zone.	[m/time unit]
A.2.1.3	Infiltration capacity of the vadose zone	Time needed for surface water to reach the aquifer-Influences the filtration / purification of the water.	[m/day]

↑ Go to overview ↑

A.2.2 Geochemistry

A.2.2.1 Geochemistry of vadose zone Chemical and mineral weathering of various rocks, [mg/l development of secondary porosity, etc. are triggered by the dissolution kinetics of rocks and minerals in aqueous medium.]
--	---

 \uparrow Go to overview \uparrow

A.3 Surface

A.3.1 Geomorphology

A.3.1.1	Land slope	High slopes increase erosion risks and increase; Low slopes may reduce run-off.	[degrees; %]

↑ Go to overview ↑

A.3.2	Hydrography		
A.3.2.1	Drainage density (abundance of rivers and streams)	Drainage density is significant in that it plays an important role in surface-runoff processes, influencing the intensity of torrential floods, the concentration, the sediment load and even the water balance in a drainage basin.	[km/km ²]

 \uparrow Go to overview \uparrow

9 AGREEMAR

↑ Go to overview ↑

A.3.3	Land use / land cover		
A.3.3.1	Soil occupation	Types of land use / land cover influence the runoff generation, infiltration rates, etc.	surface [land use type]
A.3.3.2	Land surface area	Spatial extent of the influence of the soil occupation	[km²]
			↑ Go to overview ↑
A.3.4	Soil		
A.3.4.1	Top-soil texture	Fractions among sand, clay, silt.	[%; mg/kg]
A.3.4.2	Total organic carbon of top soil	TOC which will give different adsorption and biodegradation conditions.	[%; mg/kg]
A.3.4.3	Lineament density	Abundance of preferential paths of water infiltration from surface to subsurface.	[km/km ²]
			↑ Go to overview ↑
A.3.5	Karst features ²		
A.3.5.1	Epikarst development	High epikarst thickness can be very favorable to slow, spread and diffuse water infiltration.	[m]
A.3.5.2	Degree of karstification	Water flow velocity is affected by the degree of karstification and influences the	[m/h]

water availability for recovery.

² Read more: Daher, W., Pistre, S., Kneppers, A., Bakalowicz, M., Najem, W. (2011) Karst and artificial recharge: Theoretical and practical problems: A preliminary approach to artificial recharge assessment. Journal of Hydrology, 408 (3–4): 189-202. https://doi.org/10.1016/j.jhydrol.2011.07.017.

¹⁰ AGREEMAR

Adaptive agreements on benefits sharing for managed aquifer recharge in the Mediterranean region

B Availability of water for MAR

The thematic associated with the availability of water resources for MAR implementation is considered, which plays an essential role on determining the feasibility level of a potential MAR site. It considers both conventional and non-conventional water sources (e.g., wastewater, desalinated water), their qualitative composition (e.g., chemical pollutants, pathogens, turbidity, etc.), along with the impact of climate processes.

B.1 Climatic context

B.1.1	Hydrometeorology		
B.1.1.1	Precipitation	Amount of water that can generate runoff and be allocated for infiltration at MAR sites.	[mm/month]
B.1.1.2	Evapotranspiration	Refers to the amount of water that is removed from the water budget (contribute negatively as a sink term to the water deficit).	[mm/month]
B.1.1.3	Direct run-off	Refers to the water available for MAR from the flow of rainwater, snowmelt, or spring flow over the land surface toward stream channels.	[m³/day]
			\uparrow Co to overview \uparrow

1 Go to overview 1

B.2 Source water

B.2.1 Source water quality

B.2.1.1	Pathogen concentration of recharge water	The concentration of waterborne pathogenic organisms, such as bacteria, protozoan and viruses. <i>E. coli</i> .	[Number of pathogens per liter]
B.2.1.2	Nutrients concentration of recharge water	Although necessary for plants, high levels of nutrient (e.g., nitrates) can be harmful for peoples. Following Australian guidelines (2006) ³ , this category also includes total nitrogen, total phosphorous and organic carbon.	[mg/kg; ppm]
B.2.1.3	Salinity and sodicity concentrations of recharge water	High concentrations of salinity indicators (EC, Cl etc.) might reduce ability of plants to uptake water, and have adverse effects on humans' health (blood pressure, kidney stones, rheumatism etc.).	[mg/l; mg/kg]
B.2.1.4	Organic chemicals in recharge water (pesticides, pharmaceuticals, etc.)	Pesticides, pharmaceutical, cosmetics, nanomaterials and others. Potential health hazards at high concentrations: pesticides might cause acute health effects such as chemical burns, nausea, or convulsions. Pharmaceuticals are associated with toxicity, teratogenicity and carcinogenicity.	[µg/kg]
B.2.1.5	Turbidity and particulates of recharge water	With respect to MAR, turbidity-related risks include: reduced disinfection performance, leading to increased risk from microbial pathogens; increased risk of transporting a range of contaminants that can sorb to particles; reduced permeability due to clogging (operational risk).	[NTU]
B.2.1.6	Inorganic chemical concentrations of recharge water	This category includes pH, EC, Sodium, Chloride, Boron, Bicarbonate, Arsenic, Fluoride, etc.	[mg/l; µS/cm]
B.2.1.7	Radionuclides in recharge water	Radioactive isotopes or unstable forms of elements.	[Bq]
B.2.1.8	Proximity to contamination sources (including the sea)	Distance from contamination sources including seawater intrusion.	[km]
B.2.1.9	Pathogen concentration of recharge water	The concentration of waterborne pathogenic organisms, such as bacteria, protozoan and viruses, <i>E. coli.</i>	[number of pathogens per liter]

³ Australian guidelines for water recycling - Managed aquifer recharge (Phase 2) (2009). Natural Resource Ministerial Management Council, Environment Protection and Heritage Council and National Health and Medical Research Council, Canberra. Available online at

https://www.waterquality.gov.au/guidelines/recycled-water.

B.2.2 Source water availability

B.2.2.1	Natural water availability	Refers to the amount of water that can be allocated to infiltration purposes (storms, rainfall, monsoons, lakes, rivers).	[m³/day]
B.2.2.2	Non-conventional water availability	Refers to the amount of water that can be allocated to infiltration purposes (treated wastewater, industrial water).	[m³/day]
B.2.2.3	Proximity to origin of water sources (incl. conventional and non-conventional)	Indication of the degree of availability: how easily the source water can be transferred to the recharge site (also related to costs).	[km]
B.2.2.4	Water supply connection density	Describes the pressure exerted on community drinking water supply sources, given as the ratio of active public water supply sources (e.g., number of public wells) to water supply connections (e.g., number of households). Communities that rely on a single public water supply are especially vulnerable to shortages and contamination. Hence, it can influence the water availability.	[-]
B.2.2.5	Surface water conveyance infrastructure	Water availability restriction due to the presence of endangered species in the source water.	[ordinal]

C Water demand

The thematic of water demand is an essential component of integrated water management for achieving sustainable development. The classification was derived from the general approach of groundwater-dependent ecosystem services (ES) and included the main four ES clusters: provisioning, regulating, supporting and cultural. In brief: provisioning ecosystem services include human benefits that can be directly extracted from nature, such as food, drinking water, wood fuel etc. Regulating services includes ecosystem processes associated with the mitigation of natural phenomena, thus allowing ecosystems to remain clean, sustainable and resilient to climate changes. Cultural services contribute to the cultural advancement of the people, the building of knowledge and ideas through the interaction with nature and recreation. Lastly, supporting services are needed for producing and maintaining the other three ecosystem services. These services involve natural processes such as soil formation and retention, biomass production, production of atmospheric oxygen.

C.1 Provisioning needs

C.1.1 Domestic supply

C.1.1.1	Non-satisfied domestic demand by the existing water resource	Portion of water available from MAR that can cover all water demand per period of time.	[%]
C.1.1.2	Annual growth rate of domestic water supply	Trend of water amount demanded for domestic activities (time scale larger than consumption rate).	[m³/month; Mm³/year]
С.1.1.3	Water price	Price might impact the water consumption.	[€/m³]

 \uparrow Go to overview \uparrow

C.1.2 Agricultural supply

C.1.2.1Crop patternDepends on the crop type that is using irrigated water obtained from MAR facilities.[crop type]C.1.2.2Land covered/usedArea allocated for agricultural purposes that uses water originating from MAR.[km²]C.1.2.3Annual growth/decline rate of agricultural supplyTemporal variations of the water collected from MAR sites for irrigated water that is actually used by the plant (e.g., low efficiency increases the water demanded by the agricultural workers).[%]		8		
C.1.2.2Land covered/usedArea allocated for agricultural purposes that uses water originating from MAR.[km²]C.1.2.3Annual growth/decline rate of agricultural supplyTemporal variations of the water collected from MAR sites for irrigated purposes.[Mm³/time]C.1.2.4Irrigation efficiencyPercentage of irrigated water that is actually used by the plant (e.g., low efficiency increases the water demanded by the agricultural workers).[%]	C.1.2.1	Crop pattern	Depends on the crop type that is using irrigated water obtained from MAR facilities.	[crop type]
C.1.2.3Annual growth/decline rate of agricultural supplyTemporal variations of the water collected from MAR sites for irrigated purposes.[Mm³/time]C.1.2.4Irrigation efficiencyPercentage of irrigated water that is actually used by the plant (e.g., low efficiency increases the water demanded by the agricultural workers).[%]	С.1.2.2	Land covered/used	Area allocated for agricultural purposes that uses water originating from MAR.	[km ²]
C.1.2.4 Irrigation efficiency Percentage of irrigated water that is [%] actually used by the plant (e.g., low efficiency increases the water demanded by the agricultural workers).	C.1.2.3	Annual growth/decline rate of agricultural supply	Temporal variations of the water collected from MAR sites for irrigated purposes.	[Mm³/time]
	C.1.2.4	Irrigation efficiency	Percentage of irrigated water that is actually used by the plant (e.g., low efficiency increases the water demanded by the agricultural workers).	[%]

C.1.5	industrial suppry		
C.1.3.1	Consumption per unit area	Amount of MAR-allocated water needed to fulfil the industrial needs.	[m ³ /km ²]
C.1.3.2	Industrial area extent	Area where the water is consumed for industrial purposes (in case water consumption is expressed per unit of area.	[km²]
C.1.3.3	Annual growth/decline rate of industrial supply	Temporal variations of the water collected from MAR sites for industrial purposes.	[Mm³/time unit]
			↑ Go to overview ↑

C.1.4 Geothermal energy

geothermal water into the aquifer (ASR).	С.1.4.1	Generated energy from geothermal water	Extracting hot water and reinjecting it into the aquifer (ASR).	[kW/m ³]
--	---------	---	---	----------------------

 \uparrow Go to overview \uparrow

C.2 Regulatory needs

C.2.1	Buffering water quality		
C.2.1.1	Rate of aquifer salinization	MAR can provide necessary water to ameliorate aquifer water quality.	[(S/m) per time unit], [(mg/l) per time unit]
C.2.1.2	Decrease of groundwater levels (e.g., annual mean values, seasonal)	MAR can change temperature of groundwater (cooling or heating).	[°C]

↑ Go to overview ↑

C.2.2 Buffering water quantity

C.2.2.1	Flood risk (flood water might be harvested and injected to the aquifer)	Harvested stormwater can be injected into aquifer to reduce flooding and erosion effects.	[rainfall intensity in mm/h]
C.2.2.2	Erosion risk (run-off water might be collected and injected to the aquifer)	Water surplus of humid period could be stored in the aquifer and used later on during wet season.	[water deficit in mm]
С.2.2.3	Natural groundwater recharge rate	Low natural groundwater recharge rates lead to reduced water availability.	[mm/time unit]

C.3 Supporting needs

0.5.1	erounanater acpenaent e	leosystems	
С.З.1.1	Required stream baseflow	MAR can guarantee a minimum river stage able to be exploited.	[m³]
C.3.1.2	Required springs discharge	MAR affects springs discharge.	[m ³]
C.3.1.3	Required water to maintain wetlands and phreatophytes	Needs for groundwater dependent ecosystems and river minimum discharges.	[number / variability of species]
C.3.1.4	Required water to maintain hyporheic zone dynamics	MAR affects the hyporheic zone dynamics.	[m ³]

C.3.1 Groundwater dependent ecosystems

 \uparrow Go to overview \uparrow

C.3.2 Land surface stability

C.3.2.1	Risk of land subsidence (MAR can reduce the risk of land subsidence)	Land subsidence can occur in zones where phreatic aquifer is overexploited.	[subsidence risk classes]
	54651461166)		

↑ Go to overview ↑

C.4 Cultural needs

C.4.1	Hot springs		
C.4.1.1	Hot water abundance in hot springs	Hot water abundance in hot springs.	[m³]
C.4.1.2	Number of visitors of hot springs	Refers to the amount of water demanded from MAR schemes regarding hot springs.	[No. of visitors per month / season / year]

↑ Go to overview ↑

C.4.2 Leisure and recreation

C.4.2.1	Decrease of water volumes in water bodies	Required water for leisure and recreation activities	[m³]
C.4.2.2	Number of site visitors for leisure and recreation	Number of site visitors for leisure and recreation.	[no. of visitors per month / season / year]

D Non-physical considerations

The fourth thematic includes all non-physical considerations that are nonetheless relevant for the success of MAR schemes, such as legal and socio-economic aspects.

D.1 Legal constraints

D.1.1	Legal constraints		
D.1.1.1	Legal constraints at European, National, International scale	Legislation ⁴ (e.g., Natura 2000, health, EU Water Framework Directive, wellhead protection zones, maximum infiltration zones), transboundary transfer flows.	[ordinal]

↑ Go to overview ↑

D.2 Governance constraints

D.2.1 Water rights

	_		
D.2.1.1	Water rights for beneficiaries	Clarity, acceptability, and efficient control to ensure that the water rights of the beneficiaries are satisfied.	[ordinal]
D.2.1.2	Source water owner	Clear legal framework regarding the benefits and responsibilities of the source water owner.	[ordinal]
D.2.1.3	Land ownership	Clear legal framework regarding the benefits and responsibilities of the land owner.	[ordinal]
D.2.1.4	Acceptance of MAR owner by local stakeholders	Acceptance of MAR owner by local stakeholders.	[ordinal]
D.2.1.5	Level of accountability in terms of legislations and public	Level of accountability in terms of legislations and public.	[ordinal]

 \uparrow Go to overview \uparrow

D.2.2	Trans-border issues		
D.2.2.1	Existence of transboundary flows	Sharing of water among different countries might lead to further	[ordinal]
D.2.2.2	lssues with downstream/upstream countries	complications, leading to delays, extra costs etc.	[ordinal]

 ⁴ See also: Fernández Escalante, E., Henao Casas, J. D., Vidal Medeiros, A. M., San Sebastiàn Sauto, J. (2020).
 Regulations and guidelines on water quality requirements for Managed Aquifer Recharge. International comparison. Acque Sotterranee - *Italian Journal of Groundwater*, 9(2). https://doi.org/10.7343/as-2020-462
 AGREEMAR

Adaptive agreements on benefits sharing for managed aquifer recharge in the Mediterranean region

D.2.3 Political stability

.

D.2.3.1	Regional conflicts (in general)	Increase risk for intentional damages (vandalism, sabotage etc.).	[ordinal]
D.2.3.2	Corruption	Refers to all stakeholders involved (from owners to users).	[ordinal]

↑ Go to overview ↑

D.3 Social constraints

D.3.1 Awareness of MAR

D.3.1.1	Awareness for MAR	Level of knowledge regarding the benefits (and potential hazards) of MAR techniques.	[ordinal]
D.3.1.2	MAR acceptance (e.g., religion constraints)	Depends on factors such as the importance of MAR objective for the citizens, reliability of MAR operators etc.	[ordinal]
D.3.1.3	Priority of water allocation	Water allocation for other purposes can affect water availability for MAR.	[ordinal]
			A A

 \uparrow Go to overview \uparrow

D.3.2 Vulnerability to groundwater supply

D.3.2.1	Poverty status	Water price might lead to discriminations among different society classes.	[ordinal]
D.3.2.2	Linguistic isolation	Might impact awareness of people for MAR-related information.	[ordinal]
D.3.2.3	Educational attainment	Impacts the understanding of people on the technical and non-technical details related to MAR concept.	[ordinal]

↑ Go to overview ↑

D.3.3	Health		
D.3.3.1	Possible impact of MAR facility on health	Potential health risks associated with the water quality needs to be sufficiently monitored during all phases of the MAR project.	[ordinal]

D.3.4	Social capital		
D.3.4.1	Social participation / involvement in MAR implementation	Participation in local organizations and unions ⁵ .	[ordinal]
D.3.4.2	Social support for MAR enhancement	Support from the authorities, family, acquaintances, neighbors.	[ordinal]

↑ Go to overview ↑

D.4 Environmental constraints

D.4.1 On optical aesthetics during the construction stage

D.4.1.1	Distance of MAR to other types of infrastructure, especially sensitive landscape	For example, noise levels can impact the acceptance of MAR solutions from near-by residents.	[km]
			↑ Go to overview ↑
D.4.2	On emissions		
D.4.2.1	Emission during construction	Dust and carbon emissions; Liquid wastes from paints and machinery during the construction period.	[l; mg/m³]
D.4.2.2	Risk of Insect proliferation	Insects can transmit diseases, deteriorate the aesthetic of the area, influence the agricultural activities etc.	[%]
			↑ Go to overview ↑

D.4.3 Cultural heritage

sites/objects MAR on archeological sites/objects.	D.4.3.1	Risk of MAR on archeological sites/objects	Probability of negative impacts caused by MAR on archeological sites/objects.	[%]
---	---------	---	---	-----

⁵ Hoa, L.T., Dinh, P.T., Chau, N.T.P., Thuy, N.T.T. (2022) Assessment of livelihood risks due to climate change and ecological resources in Can Gio mangrove biosphere reserve, Vietnam *IOP Conf. Ser.: Earth Environ. Sci.* 1028, 012001. https://doi.org/10.1088/1755-1315/1028/1/012001

¹⁹ AGREEMAR Adaptive agreements on benefits sharing for managed aquifer recharge in the Mediterranean region

D.5 Economic constraints

D.5.1	Investment costs		
D.5.1.1	Cost of preliminary studies	All preliminary characterization studies of the recharge site (e.g., geological and hydrogeological characterization, technical-economic study, impact study, and preparation of the authorization file).	[€]
D.5.1.2	Cost of water abstraction	cost of civil engineering works for the pumping of water out of the river/canal. As well as pumping equipment.	[€]
D.5.1.3	Cost of water transfer	Construction of water transfer infrastructure including the supply pipeline.	[€]
D.5.1.4	Cost of recharge water	Refers to pre-treatment units, e.g., primary (intermediate settling and filtration basins, secondary and tertiary.	[€]
D.5.1.5	Cost of land acquisition	Cost of purchasing land for the construction of infiltration basins.	[€]
D.5.1.6	Cost of Infiltration basins	In general, this is the main investment. Includes the design (civil engineering) and construction of infiltration basins (injection wells in the case of direct recharge), as well as associated equipment.	[€]

D.5.2 Operating costs

D.5.2.1	Cost of water purchase during operating phase of MAR	Purchase cost in the case of withdrawal from a water canal or network, as well as charges, levies, or other taxes.	[€/time unit]
D.5.2.2	Cost of maintenance and uptake during operating phase of MAR	Maintenance of the recharge water pumping system in the river.	[€/time unit]
D.5.2.3	Cost of energy during operating phase of MAR	Electricity consumption of the equipment and pumping system used to supply the recharge water to the recharge site. It will depend on the flow rate and the price of energy.	[€/time unit]
D.5.2.4	Cost of pre-treatment operation during operating phase of MAR	The operational and maintenance costs of the infrastructure for pre-treatment of groundwater (excluding investment). They include, for example, the cost of maintaining and cleaning settling tanks, the cost of chlorination products, etc.	[€/time unit]
D.5.2.5	Cost of monitoring during operating phase of MAR	All the costs related to the control and periodic monitoring of groundwater or recharge water quality (e.g., laboratory analysis cost) or the costs associated with checking the proper functioning of the device (essentially labor costs if an automated control system is not set up).	[€/time unit]
D.5.2.6	Other annual expenses during operating phase of MAR	Includes all financial expenses not mentioned above: administrative and personnel management expenses, financial expenses on investment and insurance loans etc.	[€/time unit]
			↑ Go to overview ↑

D.5.3 Levelized costs

D.5.3.1	Levelized cost: maintenance	Maintenance expenses over the life of a	[€/m³]
	cost-recharge	MAR project divided by the annual	
		volume of reenarge (or initiation)	

 \uparrow Go to overview \uparrow

D.6 Infrastructural constraints

D.6.1	Accessibility			
D.6.1.1	Accessibility network to MAR facility	Distance to main/secondary/gravel roads.	[km]	
			A	

⁶ Maréchal, J.-C.; Bouzit, M.; Rinaudo, J.-D.; Moiroux, F.; Desprats, J.-F.; Caballero, Y. Mapping Economic Feasibility of Managed Aquifer Recharge. Water 2020, 12, 680. https://doi.org/10.3390/w12030680 21 AGREEMAR

Adaptive agreements on benefits sharing for managed aquifer recharge in the Mediterranean region

D.6.2 Communications

D.6.2.1	Communication systems with and	Sufficient Internet, mobile signals.	[ordinal]
	within MAR facility		

↑ Go to overview ↑

D.7 Safety

D.7.1 Safety of the workers and users

D.7.1.1	Water level of the recharge ponds in relation to workers and users' safety	Water levels must be below a certain threshold	[cm]
D.7.1.2	Electricity contact with operating system in relation to workers and users' safety	In case the voltages are high, then linkage of electric energy from the pumping system/recharge network might be dangerous.	[volt]

Acknowledgement

The AGREEMAR project is funded by National Funding Agencies from: Germany (*Bundesministerium für Bildung und Forschung – BMBF*, grant no. 02WPM1649), Cyprus (*Research & Innovation Foundation – RIF*, grant no. 0321-0024), Portugal (*Fundação para a Ciência e a Tecnologia – FCT*, grant no. PRIMA/0004/2021), Spain (*Agencia Estatal de Investigación, Ministerio de Ciencia e Innovación – MCI*, grant no. PCI2022-133001) and Tunisia (*Ministère de l'Enseignement Supérieur et de la Recherche Scientifique – MESRSI*, grant no. PRIMA/TN/21/07). The project is funded under the Partnership for Research and Innovation in the Mediterranean Area (PRIMA). The PRIMA Programme is supported under Horizon 2020 by the European Union's Framework for Research and Innovation.